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1. Introduction 

 
Anew analysis that describes the change on electric properties of polymeric 

composites, filled with conductive aggregates, during organic solvent absorption 
processes is introduced in the present work.  Figure 1 shows a simplified typical electric 
circuit arrangement.  In this configuration, the solvent diffusion process into the 
composite gradually changes its electric conductivity, following the solvent 
concentration profile along the sample radius over a period of time. In order to model 
the previous situation, the following hypotheses were considered: 

I) Solvent diffusion process on the sample is one-dimensional, taking place 
only along the radial direction (axial diffusion is neglected). 

II) The polymer matrix and the organic solvents are dielectric materials. 
III) Solvents are absorbed only by the polymer matrix, and not by the 

conductive aggregates. 
IV) Solvent diffusion into the composite follows Fick’s Law (this is especially 

true on elastomer matrix composites and copolymers). 
Using those hypotheses it is possible to predict, at constant voltage, the variation 

of the electric current on the composite during the solvent diffusion process.  First of all, 
Ohm’s Law can be written as: 

 )(
),(

)(
)(

tdA
ltr

E
tI

m

ta

o ⋅
= � ρ

 (1) 

where I(t) and ρm(t) are the instantaneous electric current on the sample and local 
composite resistivity. A(t), a(t) and l are the transversal section, external radius and 
length of the sample. Finally E is the applied voltage, which remains constant.   

Eq. 1 can be normalized as:  
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where r is the radial coordinate and variables indexed with zero represent the state of 
the composite before the solvent gets in touch with it. In order to calculate the electric 
resistivity, it is necessary to know its relationship with the solvent volumetric fraction. 
This can be done by modifying a model proposed by McLachlang [11], which describes 
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the conductive composite electric resistance change as a function of its conductive and 
dielectric volumetric fractions. This equation, which is known as the generalized 
effective media (GEM) model, integrates two morphology parameters: fC (the critical 
percolative value of the conductive fraction) and q (an experimental exponent). Previous 
equation can be written as: 
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where ρH , ρL  and ρm  are the resistivities of the high and low resistive components and 
the composite resistivity respectively, f is the conductive fraction and  fR is given by the 
following expression: 

 
C

C
R f

f
f

−
=

1
 (4) 

 
It is important to mention that the GEM equation was deduced for a composite of only 
two components. However, we can use it if considering the following approximation; 
since the polymer matrix and organic solvents are both dielectrics with a resistivity of 
the same order of magnitude and substantially different from that of the conductive 
fraction, we may treat both phases (polymer and solvent) as an unique phase. 
Therefore, the sum of the polymeric matrix fraction, fP, plus the solvent fraction, fS, will 
be named as the non conductive fraction. This last approximation is possible because 
the resistivity is one of the physical magnitudes that present the broader range of 
values. Indeed, the resistivity of common organic substances varies typically between 
1016 to 108 ohms-cm, while the conductive aggregates have conductivities between 10–1 
to 10–7 ohms-cm. 

To evaluate f(r,t) on each location as function of time, the following relation was 
considered: 
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where VT (r,t) is the local volume as a function of time. 
 The solution of Fick equation, considering previous conditions (7), is:     
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where f Smax is the insaturation solvent fraction, J0  and  J1  are the first class Bessel 
functions, of zero and first order  respectively, and αn are the positive roots of  J0[a(t)αn].  
The previous solution converges very well for medium and large times; however for 
short times it is needed a significant number of additional terms. An alternative is to use 
the following approximation for short times [16]:  
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Using the previous equations it is possible to calculate f (r,t), using the value of fS (r,t) in 
Eq. 5.  Finally, to evaluate the increment of the filament external radius the following 
relation was deduced: 
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It is evident that it is not possible to get an explicit expression for a(t) using the previous 
equations, however it is possible to evaluate this parameter employing a numerical 
method.  
 

 
2. Results and discussion. 
  

Figure 3 shows the percolation data of both composites. The continuous lines in 
this plot represent the best data fitted. Subsequently concentration profiles were 
evaluated for six different solvents, as a function of the radial coordinate at, different 
times. Figure 3, shows the relationship between the instantaneous radii and the initial 
one, for a series of different solvents. First of all, it is interesting to observe that on the 
studied case the moving boundary exhibits a very large variation, as the radii increases 
more than a 40%. As previously mentioned, for large swelling levels the diffusion 
coefficient may became concentration dependent, however the results obtained with a 
constant coefficient correlate satisfactorily with the experimentally observed data [14-
15]. 

Figure 4 illustrates how the electric current curve falls with the solvent contact 
time, for each different solvent. It can be noticed that, in general, the current diminishes 
rapidly with time, at the exception of the first solvent, which is in good agreement with 
experimental observations [4, 7, 10, 14, 15]. As expected, the current intensity drops 
faster for solvents that have larger diffusion coefficients on the composite than for those 
that have smaller ones. Moreover, it is evident that the swelling curves of Figure 6 could 
fit in a master curve, if one changes the contact time (t) as the abscise variable by a 
dimensionless one as Dt/a(t)2. Finally, it is important to mention that this methodology 
may allow a more precise sensor design, based only on easy obtainable laboratory 
data. 
 
5. Conclusion 

A methodology that describes the change on electric properties of polymeric 
composites, during solvent diffusion processes, is presented in this work. The equations 
that result from this methodology requires simple numerical procedures to be solved, 
and no numerical instability was observed during the process. The obtained results 
correlate very close the available experimental data, and therefore could be very useful 
for chemical sensor design. 
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Figure 2.- Schematic of circuit for sensor testing 

 
 
 

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

D ielect r ic vo lument ric f ract io n

PB

SBR

 
 
 

Figure 3.- Percolation curve for PB and SBR composites.  
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Figure 3.- Evolution of the instantaneous radii for different solvents 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.- Falling of the current intensity with the solvent contact time. 
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