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In this work we propose a scheduling and control formulation for simultaneously ad-
dressing scheduling and control problems by explicitly incorporating process dynamics in
the form of system constraints that ought to be met. The formulation takes into account
the interactions between such problems and is able to cope with nonlinearities embedded
into the processing system. The simultaneous scheduling and control problems is cast
as a Mixed-Integer Dynamic Optimization (MIDO) problem where the simultaneous ap-
proach, based on orthogonal collocation on finite elements, is used to transform it into
a Mixed-Integer Nonlinear Programming (MINLP) problem. The proposed simultaneous
scheduling and control formulation is tested using a Methyl-Methacrylate CSTR where
four different types of grades are manufactured. It is shown that the proposed methodol-
ogy provides the best grade scheduling policy and optimal transition trajectories leading
to maximum process profit.

1. Introduction

Traditionally, scheduling and control problems in chemical processes have been ad-
dressed in a separate way. From a scheduling point of view, the interest lies in determining
optimal production sequences, production times for each product, switching times, leading
to designs featuring maximum profit. Commonly, during this task, features related to the
dynamic behavior of the underlying process are not taken into account. Similarly, when
computing optimal transition trajectories (i.e. optimal values of the manipulated and
controlled variables) between different set of products, one of the major objectives lies in
determining the transition trajectory featuring minimum transition time. When address-
ing optimal control problems, it is normally assumed that the best production sequence
has been determined in some way. Hence, normally scheduling features are neglected in
optimal control formulations.

In this work we propose a simultaneous approach to address scheduling and control
problems, particularly those emerging during grade transition operations in polymeriza-
tion reactors. In the proposed formulation, integer variables are used to determine the best
production sequence and continuous variables take into account production times, cycle
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time etc. Because, dynamic profiles of both manipulated and controlled variables are also
decision variables, the resulting problem is cast as a Mixed-Integer Dynamic Optimiza-
tion (MIDO) problem. To solve the MIDO problem we use a methodology which consists
in transforming the MIDO problem into a MINLP that can be solved using standard
methods such are the Outer-Approximation method. Roughly speaking, the strategy for
solving the MIDO problem consists in using a simultaneous equation-oriented approach
in which the optimal control problem is solved by transforming the set of ordinary dif-
ferential equations into a set of algebraic equations. The simultaneous scheduling and
control formulation is applied to a Methyl-Methacrylate CSTR where four different types
of grades are manufactured.

2. Problem definition

Given are a number of products that are to be manufactured in a single continuous mul-
tiproduct CSTR. Steady-state operating conditions for manufacturing each product are
also specified, as well as the demand rate and price of each product and the inventory and
raw materials costs. The problem to be tackled consists in the simultaneous determination
of the best production wheel (i.e. cyclic time and the sequence in which the products will
be manufactured) as well as the transition times, production rates, length of processing
times, amounts manufactured of each product, such that the profit is maximized subject
to a set of scheduling and dynamic state constraints.

3. Scheduling and Control Formulation

In the following simultaneous scheduling and control (SSC) formulation, we assume
that all products are manufactured in a single CSTR and that the products follow a
production wheel meaning that all the required products are manufactured, in an optimal
sequence to be determined, and that the sequence is repeated cyclically (see Pinto and
Grossmann [1]).
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1. Scheduling part.
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2. Dynamic Optimization part.

To address the optimal control part, the so-called simultaneous approach [2] for
solving dynamic optimization problems was used. In this approach the dynamic
mathematical model representing system behavior is discretized using the method
of orthogonal collocation on finite elements.
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4. Application example

To analyze the simultaneous scheduling and control problem we consider grade transi-
tions in a bulk free-radical isothermal Methyl-Methacrylate CSTR previously described
by Congalidis et al. [3] and used by Mahadevan et al. [4] to address grade transition prob-
lems from a control point of view. The mathematical model was cast in dimensionless
form by dividing each state and flow rates of monomer and initiator by their maximum
expected values.
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Table 1 information regarding steady-state design and reactor scaling is shown.
For testing our simultaneous scheduling and control formulation four polymer grades

(A,B, C, D) were defined which correspond to molecular weight distributions of 15000,
25000, 35000 and 45000. The initiator flow rate (Qi) was selected as the manipulated
variable to achieve grade transition. Table 2 contains the steady-state values of the
states and the manipulated variable leading to manufacture each one of the A,B,C and
D grades. Also shown in Table 2 are the demand rate and cost of each grade.

The simultaneous scheduling and control formulation, as represented by Equations (1)-
(17), was solved using GAMS/SBB, a MINLP solver embedded in GAMS which uses
a branch and bound techniques for solving MINLP’s. The problem size consisted of
2897 constraints, 3138 continuous variables and 96 integer variables. The problem was
started solving first a relaxed version of the MINLP (4 s) and used to initialize the
MINLP which was solved in 430 s cpu time. Table 3 shows the results of solving the
scheduling and control problem. As can be seen, the optimizer selected the cyclic sequence
A → D → C → B for the production wheel with a cycle time of 400 hrs. The formulation
clearly assigns one of the larger processing times (100 h) to the more valuable grade D
and the shortest processing time (80 h) to the less valuable grade A.

As a way to understand the role of process dynamics in the grade transition sequence
that was selected, the MMA polymerization CSTR was linearized around each one of the
steady-state design conditions shown in Table 2. In all the cases, the dominant eigenvalue
was always -1, which is an indication that all the grades have similar open-loop constant
times. This means that, the transitions are dominated by cost and are slightly influenced
by process dynamics.
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Table 1
Steady-state design and scaling information.

Qm 1 Monomer feed stream [m3/h]

V 0.1 Reactor volume [m3]

Ciin 8 Feedstream initiator concentration [kmol/m3]

Mm 100.12 Monomer molecular weight [kg/kmol]

Cmin
6 Feedstream monomer concentration [kmol/m3]

f ∗ 0.58 Initiator efficiency

ktc 1.3281x1010 Termination by coupling rate constant [m3/(kmol-h)]

ktd 1.093x1011 Termination by disproportionation rate constant [m3/(kmol-h)]

ki 1.0255x10−1 Initiation rate constant [1/h]

kp 2.4952x106 Propagation rate constant [m3/(kmol-h)]

kfm 2.4522x103 Chain transfer to monomer rate constant [m3/(kmol-h)]

Ĉm 5.7768 Maximum value of monomer concentration [kmol/m3]

Ĉi 0.41534 Maximum value of initiator concentration [kmol/m3]

D̂0 5.4794x10−3 Maximum value of zeroth moment

D̂1 82.219 Maximum value of first moment

Q̂i 0.05245 Maximum value of initiator flow rate [m3/h]

Q̂m 1 Maximum value of monomer flow rate [m3/h]
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Figure 1. Dynamic behavior of the MMA polymerization system during grade transition.
(a) The initiator flow rate (Qi) is the manipulated variable, (b) The average molecular
weight distribution (MWD) was one of the variables to be tracked during grade transition.
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Table 2
Grade design information. The demand rate is in [kg/h] and the price in [$/kg].

Grade Qi Cm Ci D0 D1 MWD Demand rate Price

A 0.05245 5.1788 0.4153 0.0055 82.2185 15000 0.8 10

B 0.01673 5.5068 0.1325 0.0020 49.3761 25000 0.7 12

C 0.006863 5.6745 0.0543 0.0009 32.5877 35000 1 13

D 0.003114 5.7768 0.0247 0.0005 22.3467 45000 0.8 15

Table 3
Simultaneous scheduling and control results for grade transtion in a MMA polymerization
CSTR. The objective function value is $ 54 and 400 h of total cycle time.

Slot Product Process time Production rate w Transition Time T start T end

[h] [Kg/h] [Kg] [h] [h] [h]

1 A 80 4 320 5 0 85

2 D 100 5 500 5 85 190

3 C 100 4 400 10 190 300

4 B 95 5 475 5 300 400

5. Conclusions

In this work we addressed the simultaneous scheduling and control problem for grade
transition in a MMA polymerization CSTR. Rather than assuming constant transition
times and neglecting process dynamics, a mathematical model, able to describe dynamic
process behavior during product transition, was embedded into the optimization formu-
lation. Solving the scheduling and control problem taking into account process dynamics
is the rigorous way to address scheduling problems. There is always a risk of getting
suboptimal solutions when process dynamics are neglected.
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